Файловая система ext2. Как получить доступ к разделам ext2, ext3, ext4 из Windows? Физическая организация ext2

Если у вас установлено две операционные системы, Windows и Linux, то наверняка вы хотели бы , содержащимся на разделах свободной операционной системы прямо из- под Windows, не перезагружая компьютер.

К сожалению, поддержка разделов ОС Linux в Windows не предусмотрена. А зря. Как мне кажется, это могло бы стать красивым жестом со стороны Microsoft.

Суть проблемы заключается в том, что Windows использует файловую систему NTFS, а Linux обладает своим способом организации файлов, extended file system, последняя версия которого имеет порядковый номер 4.

Linux более дружелюбна к своим пользователям нежели ее коммерческая сестра: в Linux по умолчанию предусмотрена поддержка файловой системы Windows NTFS. Конечно, установить Linux на с разделом в NTFS вам не удастся, но прочитать и записать данные с такого вы сможете.

Ext2 IFS

Ext2 IFS поддерживает Windows NT4.0/2000/XP/2003/Vista/2008 версий x86 и x64 и позволяет просматривать содержимое разделов Linux ext2, а также может производить запись на них. Утилита устанавливает системный драйвер ext2fs.sys, который расширяет возможности Windows и включает полную поддержку ext2 в ней: разделам ext2 присваиваются буквы дисков, а файлы и папки на них отображаются в диалогах всех приложений, например, в проводнике.

Ext2 FSD

Ext2 FSD – бесплатный драйвер для систем Windows (2K/XP/VISTA/7 версий x86 и x64). Как и предыдущая утилита, которая по своей сути тоже является драйвером, включает полную поддержку файловой системы ext2 в Windows.

LTOOLS – набор утилит командной строки, позволяющий читать и записывать данные на/с разделов Linux ext2, ext3 и ReiserFS (стандартные файловые системы Linux) с машины под управлением DOS или Windows.

Существует версия программы с графической оболочкой (написана на Java) – LTOOLSgui, а также версия с графической оболочкой, написанной на .

Ext2Read

На десерт как всегда самое вкусное.

Ext2Read – утилита, устроенная по типу файл менеджера, которая позволяет как просматривать, так и осуществлять запись на разделы ext2/ext3/ext4. Поддерживает LVM2 и, что отличает ее от других программ этого обзора, файловую систему ext4. Встроена поддержка рекурсивного копирования директорий.

А вот и второй десерт. Вначале было сказано, что неплохим жестом со стороны Microsoft было бы включить поддержку Linux разделов в Windows по умолчанию.

Жест все же был сделан на 20-летие Linux. Смотрите сами.

На этом все. Спасибо за внимание. Пойду отбиваться от майских жуков. Их этой весной ооочень много. 🙂

Как в среде Windows сделать возможным доступ к разделу диска или съёмному носителю с файловыми системами Ext2/3/4 ? Если, к примеру, на компьютере есть ещё и вторая система Linux . И с её данными необходимо поработать из среды Windows . Или другой пример – когда внутри Windows смонтированы виртуальные диски с установленными на виртуальные машины системами Linux или Android . С Ext2/3/4 Windows нативно не умеет работать, ей для этого нужны сторонние средства. Что это за средства? Рассмотрим ниже таковые.

***
Тройка первых средств сделает возможным только чтение устройств информации с Ext2/3/4 . Последнее решение позволит и читать, и записывать данные. Все рассмотренные ниже средства бесплатны.

1. Программа DiskInternals Linux Reader

Простенькая программка – это примитивный файловый менеджер, сделанный по типу штатного проводника Windows, с поддержкой файловых систем Ext 2/3/4 , Reiser4 , HFS , UFS2 . В окне программы увидим разделы и устройства с Linux или Android .

Для копирования необходимо выделить папку или файл, нажать кнопку «Save» .

Затем указать путь копирования.

2. Плагин для Total Commander DiskInternals Reader

Любители популярного могут извлекать данные Linux или Android внутри Windows с помощью этого файлового менеджера. Но предварительно установив в него специальный плагин. Один из таких плагинов — , он умеет подключать и читать устройства информации, форматированные в Ext2/3/4 , Fat/exFAT , HFS/HFS+ , ReiserFS . Загружаем плагин, распаковываем его архив внутри , подтверждаем установку.

Запускаем (важно) от имени администратора. Заходим в раздел . Нажимаем .

Здесь, наряду с прочими разделами диска и носителями, будет отображаться тот, что с Ext2/3/4 .

Данные копируются традиционным для способом – клавишей F5 на вторую панель.

3. Плагин для Total Commander ext4tc

Упрощённая альтернатива предыдущему решению – ext4tc , ещё один плагин для . Он может подключать для чтения устройства информации, форматированные только в Ext2/3/4 . Скачиваем плагин, распаковываем его архив внутри файлового менеджера, запускаем установку.

Запускаем (важно) от имени администратора. Кликаем . Заходим в .

При необходимости копирования данных используем обычный способ с клавишей F5 .

4. Драйвер поддержки Ext2Fsd

Программа Ext2Fsd – это драйвер Ext2/3/4 , он реализует поддержку этих файловых систем на уровне операционной системы. С разделами диска и накопителями, форматированными в эти файловые системы, можно работать как с обычными, поддерживаемыми Windows устройствами информации в окне проводника или сторонних программ. Драйвер позволяет и считывать, и записывать данные.

Скачиваем последнюю актуальную версию Ext2Fsd .

При установке активируем (если для длительной работы) три предлагаемых чекбокса:

1 — Автозапуск драйвера вместе с Windows;
2 — Поддержка записи для Ext2 ;
3 — Поддержка форматирования для Ext3 .

На предфинишном этапе активируем опцию запуска окошка диспетчера драйвера — — с попутным присвоением устройствам информации с Ext2/3/4 буквы диска.

В окошке открывшегося увидим носитель с уже присвоенной буквой. Например, в нашем случае носителю с Ext4 задана первая свободная буква F .

Теперь можем работать с диском F в окне проводника.

Присвоить букву новым подключаемым устройствам с Ext2/3/4 можно с помощью контекстного меню, вызываемого на каждом из отображаемых в окне устройств. Но просто при присвоении буквы диска такое устройство не будет отображаться после перезагрузки Windows, это решение только для одного сеанса работы с компьютером. Чтобы сделать новое устройство с Ext2/3/4 постоянно видимым в среде Windows, необходимо двойным кликом по нему открыть настроечное окошко и установить постоянные параметры подключения. Во второй графе нужно:

Для съёмных носителей активировать чекбокс, обозначенный на скриншоте цифрой 1, и указать букву диска;
Для внутренних дисков и разделов активировать чекбокс, обозначенный на скриншоте ниже цифрой 2, и также указать букву диска.

Рассмотрим логическую структуру файловой системы ext2fs. Физически жесткий диск разбит на сектора размером 512 байт. Первый сектор дискового раздела в любой файловой системе считается загрузочной областью. В первичном разделе эта область содержит загрузочную запись - фрагмент кода, который инициирует процесс загрузки операционной системы при запуске. На других разделах эта область не используется. Остальные сектора объединены в логические блоки размером 1, 2 или 4 килобайта. Логический блок есть наименьшая адресуемая порция данных: данные каждого файла занимают целое число блоков. Блоки, в свою очередь, объединяются в группы блоков. Группы блоков и блоки внутри группы нумеруются последовательно, начиная с 1.

Структуры данных, применяемые при работе с файловой системой ext2fs, описаны в заголовочном файле /usr/include/linux/ext2fs .h.

Суперблок служит начальной точкой файловой системы и хранит всю

информацию о ней. Он имеет размер 1024 байта и располагается по смещению 1024 байта от начала файловой системы. В каждой группе блоков он дублируется, что позволяет быстро восстановить его после сбоев. В суперблоке определяется размер файловой системы, максимальное число файлов в разделе, объем свободного пространства и содержится информация о том, где искать незанятые участки . При запуске ОС суперблок считывается в память и все изменения файловой системы вначале находят отображение в копии суперблока, находящейся в ОП, и записываются на диск только периодически. Это позволяет повысить производительность системы, так как многие пользователи и процессы постоянно обновляют файлы. С другой стороны, при останове системы суперблок обязательно должен быть записан на диск, что не позволяет выключать компьютер простым выключением питания. В противном случае, при следующей загрузке информация, записанная в сунерблоке, окажется не

соответствующей реальному состоянию файловой системы.

После суперблока следует описание (дескриптор) группы блоков. Хранящаяся в нем информация позволяет найти битовые карты блоков и индексных дескрипторов, а также таблицу индексных дескрипторов.

Битовой картой блоков (block bitmap) называется структура, каждый бит которой показывает, отведен ли такой же по счету блок какому-либо файлу. Значение 1 показывает, что блок занят. Эта карта служит для поиска свободных блоков в тех случаях, когда надо выделить место под файл .

Битовая карта индексных дескрипторов выполняет аналогичную функцию по отношению к таблице индексных дескрипторов: показывает, какие именно дескрипторы заняты.

Каждому файлу соответствует один и только один индексный дескриптор (inode, i-узел, информационный узел), который идентифицируется своим порядковым номером - индексом файла. В индексном дескрипторе хранятся метаданные файла. Среди них - все атрибуты файла, кроме его имени, и указатель на данные файла.

Для обычного файла или каталога этот указатель представляет собой массив из 15 адресов блоков. Первые 12 адресов в этом массиве являются прямыми ссылками на номера блоков, в которых хранятся данные файла. Если данные не помещаются в 12 блоков, то включается механизм косвенной адресации. Следующий адрес в этом массиве является косвенной ссылкой, то есть адресом блока, в котором хранится список адресов следующих блоков с данными из этого файла.

Сколько блоков с данными можно так адресовать? Адрес блока занимает 4 байта, блок, как уже сказано, - 1, 2 или 4 килобайта. Значит, путем косвенной адресации можно разместить 256 - 1024 блока.

А если файл еще длиннее? Следующий адрес в массиве-указателе указывает на блок двойной косвенной адресации (double indirect block). Этот блок содержит список адресов блоков, которые, в свою очередь, содержат списки адресов следующих блоков данных.

И, наконец, последний адрес в массиве-указателе задает адрес блока тройной косвенной адресации, то есть блока со списком адресов блоков, которые являются блоками двойной косвенной адресации.

Пока остается непонятным, где находится имя файла, если его нет ни среди данных файла, ни среди его метаданных. В UNIX-подобных системах имя файла есть атрибут не самого файла, а файловой системы, понимаемой как логическая структура каталогов. Имя файла хранится только в каталоге, к которому файл приписан, и больше нигде. Из этого вытекают любопытные следствия.

Во-первых, одному индексному дескриптору может соответствовать любое количество имен, приписанных к разным каталогам, и все они являются настоящими. Количество имен (жестких ссылок) учитывается в индексном дескрипторе. Именно это количество вы можете увидеть по команде Is -1.

Во-вторых, удаление файла означает просто удаление записи о нем из данных каталога и уменьшение на 1 счетчика ссылок.

В-третьих, сопоставить имя можно только номеру индексного дескриптора внутри одной и той же файловой системы, именно поэтому нельзя создать жесткую ссылку в другую файловую систему (символическую - можно, у нее другой механизм хранения).

Сам каталог таким же образом приписан к своему родительскому каталогу. Корневой каталог всегда записан в индексный дескриптор с номером 2 (номер 1 отведен для списка адресов дефектных блоков). В каждом каталоге хранится ссылка на него самого и на его родительский каталог - это и есть псевдоподкаталоги «.» и «..».

Таким образом, количество ссылок на каталог равно количеству его подкаталогов плюс два.

Данные каталога представляют собой связный список с записями переменной длины и выглядят примерно так:

Строение каталога в ext2fs

А как же файлы физических устройств? Они могут находиться в тех же каталогах, что и обычные файлы: в каталоге нет никаких данных, говорящих о принадлежности имени файлу на диске или устройству. Разница находится на уровне индексного дескриптора. Если i-узел обычного файла указывает на дисковые блоки, где хранятся его данные, то в i-узле файла устройства содержится указатель на список драйверов устройств в ядре - тот элемент списка, который соответствует старшему номеру устройства:

Разница между обычным файлом и файлом устройства

Свойства файловой системы ext2fs:

Максимальный размер файловой системы - 4 Тбайт.

Максимальный размер файла - 2 Гбайт.

Максимальная длина имени файла - 255 символов.

Минимальный размер блока - 1024 байт.

Количество выделяемых индексных дескрипторов - 1 на 4096 байт раздела.

14 Июн

Файловые системы ext2, ext3, XFS, ReiserFS, NTFS

Файловая система - это порядок, определяющий способ организации, хранения и именования данных на любых электронных носителях информации в компьютерах.

Разнообразие файловых систем объясняется тем, что каждая была придумана под свой определённый пакет задач. Одни очень быстро записывают небольшие файлы (скажем, до 1ГБ), но при этом плохо взаимодействуют с большими файлами или вообще с ними не работают. Одни хороши с точки зрения безопасности, другие с точки зрения скорости записи/считывания. Каждая файловая система имеет свои плюсы, минусы, уязвимости и отличительные возможности.

В Linux наиболее часто используются следующие разновидности файловых систем:

  1. ext2 — расшифровывается как Second Extended File System (вторая расширенная файловая система). Разработана Реми Кардом в 1993 году как файловая система ядра Linux, в период с 1993-2001 год являлась основной файловой системой Linux .
    Достоинством является высокая скорость чтения/записи.
    Главным недостатком системы ext2 является то, что она не является журналируемой, но именно благодаря этому обладает большой производительностью (журналирование — это процесс ведения журнала, хранящего список изменений помогающего сохранить целостность файловой системы при различных сбоях системы);
  2. ext3 — расшифровывается как Third Extended File System (третья версия расширенной файловой системы). Разработана Стивеном Твиди в 2001 году, используется по сей день в дистрибутивах Linux . Появилась на свет как усовершенствованная ext2 .
    Достоинством данной системы является то, что она журналируемая, то есть её надёжность повышается в разы по сравнению с ext2 .
    Недостатком можно назвать чуть меньшую производительность и скорость чтения/записи.
  3. XFS — Разработана компанией Silicon Graphics в 1993 году, была добавлена в ядро Linux как файловая система в 2002 году во всё семейство дистрибутивов Linux , на данный момент используется как «родная» в дистрибутиве Red Hat .
    Достоинством является наличие журналирования метаданных, высокая стабильность работы, поддерживается распределение потоков ввода/вывода по группам, большая скорость чтения/записи, есть возможность дефрагментации даже при смонтированном разделе и можно увеличить объём размер файловой системы. Наиболее эффективно работает с крупными файлами.
    Недостатком является то, что размер раздела нельзя уменьшить, обработка метаданных процесс не такой уж и быстрый, работает заметно медленнее с небольшими файлами, чем другие виды файловых систем.
  4. ReiserFS — разработана компанией Namesys под руководством Ганса Райзера в 2001 году. Используется только на операционных системах Linux . Была первой журналируемой файловой системой, которую приняли в ядро.
    Достоинством данной файловой системы является то, что она очень быстро работает с небольшими файлами (скорость чтения/записи выше, чем у семейства ext4 ), поддерживает журналирование.
    Недостатком является то, что её развитие заметно замедлилось из-за ареста руководителя Ганса Райзера и отсутствует фоновое шифрование.
  5. NTFS — расшифровывается как new technology file system (файловая система новой технологии). Разработана в июле 1993 года корпорацией Microsoft . Широко используется в различных операционных системах, а также в различных носителях информации.
    Достоинством является встроенная возможность разграничивать доступ к данным для различных пользователей, а также назначать ограничения на максимальный объём дискового пространства, использование системы журналирования, высокая скорость чтения/записи небольших файлов.
    Недостатком является, то, что для стабильной работы необходима не маленькая оперативная память ПК, с крупными файлами работает медленно, ограничена длина пути к файлам (32 767 символов Юникода).

Таким нехитрым образом мы разобрались с «файловые системы ext2 , ext3 , XFS , ReiserFS , NTFS «!

Файловая система (англ. file system) - порядок, определяющий способ организации, хранения и именования данных на носителях информации ИТ – оборудования (использующего для многократной записи и хранения информации портативные флеш-карты памяти в портативных электронных устройствах: цифровых фотоаппаратах, мобильных телефонах и т. д) и компьютерной техники. Она определяет формат содержимого и физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имени файла (папки), максимальный возможный размер файла и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов.

Задачи файловой системы

Основные функции любой файловой системы нацелены на решение следующих задач:

именование файлов;

программный интерфейс работы с файлами для приложений;

отображения логической модели файловой системы на физическую организацию хранилища данных;
организация устойчивости файловой системы к сбоям питания, ошибкам аппаратных и программных средств;

В многопользовательских системах появляется ещё одна задача: защита файлов одного пользователя от несанкционированного доступа другого пользователя, а также обеспечение совместной работы с файлами, к примеру, при открытии файла одним из пользователей, для других этот же файл временно будет доступен в режиме «только чтение».

Файловая система - это основная структура, используемая компьютером для упорядочения информации на жестком диске. При установке нового жесткого диска его необходимо разбить на разделы и отформатировать под определенную файловую систему, после чего на нем можно хранить данные и программы. В Windows существует три возможных варианта файловой системы: NTFS , FAT32 и редко используемая устаревшая система FAT (также известная как FAT16).

NTFS является предпочтительной файловой системой для этой версии Windows. Она имеет множество преимуществ перед более ранней системой FAT32; ниже перечислены некоторые из них.

Способность автоматически восстанавливаться после некоторых ошибок диска (FAT32 не обладает такой способностью).
Улучшенная поддержка больших жестких дисков.
Более высокая степень безопасности. Возможно использование разрешений и шифрования для запрета пользовательского доступа к определенным файлам.

Файловая система FAT32 и редко применяемая система FAT использовались в предыдущих версиях Windows, в том числе в Windows 95, Windows 98 и Windows Millenium Edition. Файловая система FAT32 не обеспечивает уровня безопасности, предоставляемого NTFS, поэтому если на компьютере имеется раздел или том, отформатированный под FAT32, файлы на этом разделе видны любому пользователю, имеющему доступ к компьютеру. Файловая система FAT32 также имеет ограничения по размеру файлов. В этой версии Windows невозможно создать раздел FAT32 размером более 32Гб. Кроме того, раздел FAT32 не может содержать файл размером более 4Гб.

Основной причиной использования системы FAT32 может служить то, что на компьютере можно будет запустить как Windows 95, Windows 98 или Windows Millenium Edition, так и эту версию Windows (конфигурация с несколькими операционными системами). Для создания такой конфигурации необходимо установить предыдущую версию операционной системы на раздел, отформатированный под FAT32 или FAT, сделав его основным (основной раздел может содержать операционную систему). Другие разделы, доступ к которым осуществляется из предыдущих версий Windows, также должны быть отформатированы под FAT32. Более ранние версии Windows могут обращаться только к сетевым NTFS-разделам или томам. NTFS-разделы на локальном компьютере будут недоступны.

FAT – плюсы:

Для эффективной работы требуется немного оперативной памяти.
Быстрая работа с малыми и средними каталогами.
Диск совершает в среднем меньшее количество движений головок (в сравнении с NTFS).
Эффективная работа на медленных дисках.

FAT – минусы:

Катастрофическая потеря быстродействия с увеличением фрагментации, особенно для больших дисков (только FAT32).
Сложности с произвольным доступом к большим (скажем, 10% и более от размера диска) файлам.
Очень медленная работа с каталогами, содержащими большое количество файлов.

NTFS – плюсы:

Фрагментация файлов не имеет практически никаких последствий для самой файловой системы – работа фрагментированной системы ухудшается только с точки зрения доступа к самим данным файлов.
Сложность структуры каталогов и число файлов в одном каталоге также не чинит особых препятствий быстродействию.
Быстрый доступ к произвольному фрагменту файла (например, редактирование больших.wav файлов).
Очень быстрый доступ к маленьким файлам (несколько сотен байт) – весь файл находится в том же месте, где и системные данные (запись MFT).

NTFS – минусы:

Существенные требования к памяти системы (64 Мбайт – абсолютный минимум, лучше – больше).
Медленные диски и контроллеры без Bus Mastering сильно снижают быстродействие NTFS.
Работа с каталогами средних размеров затруднена тем, что они почти всегда фрагментированы.
Диск, долго работающий в заполненном на 80% – 90% состоянии, будет показывать крайне низкое быстродействие.

В качестве «родных» для Linux (то есть тех, на которые он может быть установлен и с которых способен стартовать) рассматриваются следующие файловые системы: ext2fs, ext3fs, ext4fs, ReiserFS, XFS, JFS. Именно они обычно и предлагаются на выбор при установке подавляющего большинства дистрибутивов. Конечно, существуют и способы установки Linux на файловые системы FAT/VFAT/FAT32, но это - только для тех медам и мсье, которые понимают толк в извращениях, и о них я говорить не буду.

Основными критериями при выборе файловой системы являются обычно надежность и быстродействие. В некоторых случаях приходится учитывать также фактор совместимости - в данном случае под ней понимается способность других операционок обращаться к той или иной файловой системе.
Начну рассмотрение с ReiserFS - потому что поводом к сочинению этой заметки послужил вопрос: а что следует считать маленькими файлами? Ведь общеизвестно, что именно эффективность работы с мелкими файлами является сильной стороной этой файловой системы.

Так вот, под мелкими файлами понимаются файлы размером меньше логического блока файловой системы, который в Linux в большинстве случаев равен четырем килобайтам, хотя и может задаваться при форматировании в некоторых пределах (зависящих от конкретной FS). Таких мелких файлов в любой Unix-подобной ОС - бессчетное количество. Типичным примером являются файлы, составляющие дерево портов FreeBSD, портежей Gentoo и тому подобных портообразных систем.
В большинстве файловых систем для таких мини файлов существует как свой inode (информационный узел, содержащий мета информацию о файле), так и блок данных, что приводит как к расходу дискового пространства, так и снижению быстродействия файловых операций. В частности, именно в этом причина катастрофической задумчивости файловой системы FreeBSD (как старой, UFS, так и новой, UFS2) при работе с собственной же системой портов.

В файловой системе ReiserFS в таких случаях отдельные блоки под данные не выделяются - она умудряется запихать данные файла непосредственно в область его же inode. За счет этого и дисковое пространство экономится, и быстродействие возрастает - буквально в несколько раз по сравнению со всеми прочими FS.
Такое обращение с мелкими файлами ReiserFS послужило причиной возникновения легенды о ее ненадежности. Действительно, при крахе файловой системы (то есть разрушении служебных областей) данные, размещенные совместно со своими inodes, вместе с ними же и пропадают - причем безвозвратно. Тогда как в тех файловых системах, где inodes и блоки данных всегда разобщены пространственно, последние теоретически можно восстановить. Так, для ext2/ext3 даже существуют средства, позволяющие это сделать.

Однако, как и всякая легенда, эта лишь производит впечатление достоверности. Во-первых, безвозвратная потеря данных относится лишь к очень маленьким файлам. Среди пользовательских таковых практически не бывает, а все прочие же легко восстанавливаются из дистрибутива.
Во-вторых, говоря о возможности восстановления данных из блоков, утративших привязку к своим inodes, я не случайно употребил слово «теоретическая». Потому что на практике это занятие чрезвычайно трудоемкое, не дающее гарантированного результата. Каждый, кому приходилось этим заниматься, согласится, что предаться ему можно только от полной безысходности. И это относится ко всем файловым системам Linux. Так что этим аспектом при выборе файловой системы можно пренебречь.

По суммарному быстродействию ReiserFS однозначно быстрее всех остальных журналируемых FS, а по некоторым показателям превосходит и ext2. С результатами сравнения скорости выполнения некоторых распространенных файловых файловых операций можно ознакомиться здесь.
А вот с совместимостью у ReiserFS дело обстоит несколько хуже. Доступ к ней из ОС семейства Windows, насколько мне известно, невозможен. В некоторых операционных системах семейства BSD (DragonFlyBSD, FreeBSD) реализована поддержка этой файловой системы, но в режиме только для чтения. Даже вероятность того, что произвольный Linux LiveCD прошлых лет не имеет поддержку ReiserFS, не нулевая.

И тут впору вспомнить об ext3fs. Преимущество ее вовсе не в большей надежности - это такая же легенда, как и неустойчивость ReiserFS. О случаях краха ext3fs я слышал не меньше, чем об аналогичных происшествиях с ReiserFS. Самому мне не удавалось порушить ни ту, ни другую. Разве что с ext2 получалось - но и то очень давно, во времена ядра 2.2 (или даже еще 2.0).

Нет, главное преимущество ext3fs в ее совместимости - она с гарантией будет прочитана любой Linux-системой. Например, при восстановлении с какого-нибудь древнего подручного LiveCD - ситуация, практически не столь уж невероятная, мне приходилось в нее попадать. Опять же, большинство BSD-систем легко понимают ext3fs (хотя и без журналирования). Для Windows также имеются, насколько я знаю, всякого рода драйверы и plug-ins к распространенным файловым менеджерам (типа Total Commander), обеспечивающие доступ к разделам с ext2fs/ext3fs.

В отношении производительности ext3fs оставляет противоречивое впечатление. Во-первых, быстродействие ее очень зависит от режима журналирования, каковых предусмотрено три: с полным журналированием данных, частичным их журналированием и журналированием только метаданных. В каждом из режимов она показывает различную производительность на разных типах файловых операций. Впрочем, ни в одном случае быстродействие не является рекордным.

Впрочем, если требование быстродействия ставится на первое место, то тут вне конкуренции оказывается ext2fs - правда, в этом случае придется смириться с отсутствием журналирования вообще. И, следовательно, с длительными проверками файловой системы при любом некорректном завершении работы - а при объемах современных дисков это может затянуться ой как надолго…

Относительно XFS можно сказать следующее. В плане совместимости к ней относится все то же самое, что написано для ReiserFS - более того, до некоторого времени она не поддерживалась стандартным ядром Linux. С точки зрения быстродействия она XFS она также не блещет, выступая суммарно примерно на одном уровне с ext3fs. А на операции удаления файлов вообще демонстрирует удручающую медлительность.
По моим наблюдениям, использование XFS оправдывает себя при работе не просто с большими, а с очень большими файлами - каковыми являются фактически только образы DVD и видеофайлы.

Возвращаюсь к вопросу о надежности. Банальное выключение питания в ходе обычной пользовательской работы, как правило, безболезненно переносят все журналируемые файловые системы (и ни одна из них не обеспечивает сохранности незаписанных на диск пользовательских операций - спасение утопающих и тут остается делом рук самих утопающих). Правда, для любой файловой системы можно смоделировать ситуацию, в ходе которой выключение питания приведет к более или менее серьезным ее повреждениям. Однако в реальной жизни возникновение таких ситуаций маловероятно. А полностью исключить их пожно приобретением источника бесперебойного питания - он придаст больше уверенности в сохранности данных, чем тип файловой системы. Ну а гарантией восстановления разрушенных данных в любом случае может быть только их регулярное резервное копирование…

Думаю, изложенной выше информации достаточно для осознанного выбора. Мой личный выбор в течении последних нескольких лет - ReiserFS. Изредка, на системах, где оправданно вынесение за пределы корневого раздела всего, чего только можно, целесолобразно использование ext3fs для корневой файловой системы и ReiserFS - для всех остальных.

Если предусматривается отдельный раздел под каталог /boot (а это рекомендуется при использовании загрузчика GRUB его разработчиками) - для него никакая другая файловая система, кроме ext2fs, не оправданна, какое-либо журналирование тут смысла не имеет. Наконец, если создается отдельный раздел под всякого рода мультимедийные материалы - тут можно подумать и о XFS.

Если же подойти к объяснению более методично

ext - на начальном этапе развития Linux была доминирующей система ext2 (расширенная файловая система, версия 2). С 2002 года ей на смену пришла система ext3, которая во многом совместима с ext2, но к тому же поддерживает функции журналирования, а при работе с версией ядра 2.6 и выше - и ACL. Максимальный размер файла составляет 2 Тбайт, максимальный размер файловой системы - 8 Тбайт. В конце 2008 года было официально заявлено о выпуске версии ext4, которая обладает обратной совместимостью с ext3, но многие функции внедрены более эффективно, чем ранее. Кроме того, максимальный размер файловой системы равен 1 Эбайт (1 048 576 Тбайт), и можно рассчитывать, что на какое-то время такого объема хватит. О reiser - система получила название от имени своего основателя - Ганса Рай-зера (Hans Reiser) и была первой системой с функциями журналирования, обращавшейся за данными к ядру Linux. Версия З.п в SUSE даже считалась стандартной в течение некоторого времени. Основные преимущества reiser в сравнении с ext3 - более высокая скорость работы и эффективность размещения при работе с мелкими файлами (а в файловой системе, как правило, большинство файлов мелкие). Со временем, правда, разработка reisefers приостановилась. Уже давно было заявлено о выходе версии 4, которая все еще не готова, а поддержка версии 3 прекратилась. О xfs - первоначально файловая система xfs разрабатывалась для рабочих станций фирмы SGI, функционировавших в операционной системе IRIX. Xfs особенно хороша для работы с крупными файлами, в частности идеально подходит для работы с потоковым видео. Система поддерживает квотирование и расширенные атрибуты (ACL).
jfs

jfs - a66peBHaTypaJFS расшифровывается «Журналируемая файловая система». Первоначально она была разработана для IBM, а затем адаптирована для Linux.Jfs никогда не пользовалась в Linux особым признанием и в настоящее время влачит жалкое существование, уступая другим файловым системам.
brtfs

brtfs - если на то будет воля ведущих разработчиков ядра, файловую систему brtfs в Linux ждет блестящее будущее. Эта система была разработана в Oracle с нуля. Она включает функции поддержки модуля отображения устройств (device-mapper) и RAID. Brtfs наиболее сходна с системой ZFS, разработанной компанией Sun. К ее самым интересным функциям относится проверка файловой системы на ходу, а также поддержка SSD (твердотельные диски - это жесткие диски, работающие на основе флеш-памяти). К сожалению, работа над brtfs в обозримом будущем не завершится. В Fedora, уже начиная с версии 11, предусмотрена возможность установки brtfs, но пользоваться ею я рекомендую только разработчикам файловых систем!
Не существует «быстрейшей» или «наилучшей» файловой системы - оценка зависит от того, для чего вы собираетесь использовать систему. Начинающим пользователям Linux, работающим с локальным компьютером, рекомендуется работать с ext3, а администраторам серверов - с ext4. Конечно, с ext4 скорость работы повыше, чем с ext3, но при этом в системе ext4 значительно хуже дело обстоит с надежностью данных - вы вполне можете потерять информацию при внезапном отключении системы.

Если вы установили на компьютере вторую UNIX-подобную операционную систему, то при обмене данными (из одной ОС в другую) вам пригодятся следующие файловые системы.

sysv - применяется в ОС SCO, Xenix и Coherent.

ufs - используется в FreeBSD, NetBSD, NextStep и SunOS. Linux может только считывать информацию из таких файловых систем, но не может вносить изменения в данные. Для доступа к сегментам с BSD дополнительно потребуется расширение BSD disklabel. Аналогичное расширение существует и для таблиц разбиения SunOS.

ZFS - это относительно новая система, разработанная Sun для Solaris. Поскольку код ZFS не соответствует лицензии GPL, ее нельзя интегрировать с ядром Linux. По этой причине Linux поддерживает эту файловую систему лишь опосредованно, через FUSE.
Windows, Mac OS X

Следующие файловые системы будут полезны при обмене информацией с MS DOS, Windows, OS/2 и Macintosh.

vfat - используется в Windows 9х/МЕ. Linux может считывать информацию из таких разделов и вносить в нее изменения. Драйверы системы vfat позволяют работать и со старыми файловыми системами MS DOS (8 + 3 символов).

ntfs - система применяется во всех современных версиях Windows: otNT и выше. Linux может считывать и изменять ее файлы.

hfs и hfsplus - эти файловые системы используются в компьютерах Apple. Linux может считывать и изменять ее файлы.

На CD и DVD с данными обычно используются собственные файловые системы.

iso9660 - файловая система для CD-ROM описана в стандарте ISO-9660, допускающем только короткие названия файлов. Длинные названия поддерживаются в различных операционных системах по-разному, с помощью многообразных несовместимых друг с другом расширений. Система Linux способна работать как с расширением Rockridge, обычным в UNIX, так и с расширением Joliet, разработанным Microsoft.

udf - этот формат (универсальный формат диска) появился и развился как наследник ISO 9660.

Сетевые файловые системы

Файловые системы не обязательно должны находиться на локальном диске - они
могут подключаться к компьютеру и через сеть. Ядро Linux поддерживает различные сетевые файловые системы, из которых чаще всего применяются следующие.

smbfs/cifs - помогают подключать сетевые каталоги Windows или Samba к дереву каталогов.

nfs - это важнейшая в UNIX сетевая файловая система.

coda - эта система очень напоминает NFS. В ней имеется множество дополнительных функций, но она не очень распространена.

ncpfs - работает на базе протокола ядра NetWare;oH используется Novell Netware.

Виртуальные файловые системы

В Linux существует несколько файловых систем, предназначенных не для сохранения данных на жестком диске (или другом носителе), а только для обмена информацией между ядром и пользовательскими программами.
devpts - эта файловая система обеспечивает доступ к псевдотерминалам (сокращенно - PTY) через /dev/pts/* в соответствии со спецификацией UNIX-98. (Псевдотерминалы эмулируют последовательный интерфейс. В системах UNIX/Linux такие интерфейсы используются эмуляторами терминалов, например xterm. При этом, как правило, применяются такие устройства, как /dev/ ttypn. В спецификации UNIX-98, напротив, определяются новые устройства. Более подробная информация сообщается в текстовом терминале H0WT0.)
proc и sysfs - файловая система proc служит для отображения служебной информации, касающейся управления ядром и процессами. В дополнение к этому файловая система sysfs строит взаимосвязи между ядром и оборудованием. Обе файловые системы подключаются на позициях /proc и /sys.
tmpfs - эта система построена на основе разделяемой памяти в соответствии с System V. Она обычно подключается на позиции /dev/shm и обеспечивает эффективный обмен информацией между двумя программами. В некоторых дистрибутивах (например, Ubuntu) каталоги /var/run и /var/lock также создаются с помощью файловой системы tmpfs. Файлы из этих каталогов применяются некоторыми сетевыми демонами для того, чтобы сохранять идентификационные номера процессов, а также информацию о доступе к файлам. Благодаря tmpfs эти данные теперь отражаются в RAM. Метод гарантирует высокую скорость, а также то, что после отключения компьютера в каталогах / var/run или /var/lock не останется никаких файлов.

usbfs - файловая система usbfs, начиная с версии ядра 2.6 и выше, дает информацию о подключенных USB-устройствах. Обычно она интегрирована в файловую систему proc. О поддержке USB-устройств в Linux.

Прочие файловые системы

auto - на самом деле файловой системы под таким названием не существует. Однако слово auto можно использовать в /etc/fstab или с командой mount для указания файловой системы. В таком случае Linux попытается самостоятельно распознать файловую систему. Этот метод работает с большинством важнейших файловых систем.
autofs, autofs4

autofs, autofs4 - это тоже не файловые системы, а расширения ядра, автоматически выполняющие команду mount для выбранных файловых систем. Если файловая система не используется в течение некоторого времени, то для нее автоматически выполняется команда umount. Этот метод удобен прежде всего в тех случаях, когда из многих NFS-каталогов одновременно активно используются всего несколько.

Для выполнения таких операций при запуске системы сценарий /etc/init.d/ autofs автоматически выполняет программу automount. Она конфигурируется с помощью файла /etc/auto.master. Соответствующие программы автоматически устанавливаются, например, в Red Hat и Fedora. В любом случае autofs активизируется только после конфигурации /etc/auto.master или /etc/auto.misc.
cramfs и squashfs

cramfs и squashfs - файловые системы Cram и Squash предназначены только для чтения. Они используются для того, чтобы «упаковать» как можно больше заархивированных файлов во флеш-память или ПЗУ (постоянное запоминающее устройство).

fuse - FUSE означает «Файловая система в пользовательском пространстве» (Filesystem in Userspace) и позволяет разрабатывать и использовать драйверы файловых систем вне ядра. Следовательно, FUSE всегда применяется с внешним драйвером файловой системы. FUSE работает, в частности, с драйвером NTFS ntfs-3g.

gfs и ocfs - Глобальная файловая система (Global File System) и Кластерная файловая система от Oracle (Oracle Cluster File System) позволяют строить гигантские сетевые файловые системы, к которым могут параллельно обращаться множество компьютеров в один и тот же момент.

jffs и yaffs - Журналируемая файловая система для флеш-носителей (Journaling Flash File System) и Альтернативная файловая система для флеш-носителей (Yet Another Flash File System) специально оптимизированы для работы с твердотельными дисками и флеш-носителями. С помощью специальных алгоритмов они пытаются равномерно использовать все ячейки памяти (технология «выравнивание износа»), чтобы избежать преждевременного отказа системы.
loop

loop - используется для работы с псевдоустройствами. Псевдоустройство (loopback device) - это адаптер, способный обращаться к обычному файлу как к блочному устройству. Благодаря ему в любом файле можно расположить любую файловую систему, а затем подключить ее к дереву каталогов с помощью mount. Отвечающая за это функция ядра - поддержка псевдоустройств - реализуется в модуле loop.

Существуют разнообразные способы применения псевдоустройств. В частности, они могут использоваться при создании дисков в оперативной памяти для начальной инициализации (Initial RAM disk) для GRUB или LILO, при реализации зашифрованных файловых систем или тестировании ISO-образов для CD.

Файловые системы носителей данных

Файловые системы
ISO 9660
Joliet расширение файловой системы ISO 9660.
Rock Ridge (RRIP, IEEE P1282) - расширение файловой системы ISO 9660, разработанное для хранения файловых атрибутов, используемых в операционных системах POSIX
Amiga Rock Ridge Extensions
El Torito
Apple ISO9660 Extensions
HFS, HFS+
Universal Disk Format cпецификация формата файловой системы, независимой от операционной системы для хранения файлов на оптических носителях. UDF является реализацией стандарта ISO/IEC 13346
Mount Rainier